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Abstract
The preclinical stages of therapeutic agent development cost hundreds of millions of dollars, stymying innovation 
and slowing the development of products to improve human health. There is a striking unmet need for therapies 
that protect or repair the brain damage associated with preterm birth, i.e., delivery before 37 weeks of gestation. Of 
the more than 15 million babies born preterm every year, up to 60% will go on to develop a neurological disorder, 
with the earliest-born infants the most impacted. We have limited options with limited efficacy for preventing or 
treating these changes. Combining accurate knowledge of pathophysiology with high-throughput sequencing 
and computational biology approaches is a logical step towards an optimised screening pipeline. In this study, 
we conducted comprehensive testing of dose, timing, and route of administration, integrating multimodal data 
from preclinical models of brain injury common in preterm-born infants to validate the most effective therapeutic 
option for the cord-derived mesenchymal stem cell product (HuMSC). In this study, HuMSC serves as a working 
example, but the scoring system is therapy-agnostic. We developed a scoring protocol based on microglia 
transcriptome analyses and myelin protein expression to evaluate the efficacy of the HuMSC product in a rat model 
of inflammation-associated preterm infant brain injury. We identified the superiority of treatment delivered in the 
tertiary phase of injury over treatments in the acute or subacute stages, as well as the superiority of intranasal 
over intravenous delivery of HuMSCs. The optimal time, dose, and route of administration options for HuMSC were 
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Background
Fast, accurate and cost-effective in vivo preclinical 
screening of novel therapeutics could significantly accel-
erate the drug development pipeline. Up to 40% of the 
approximately US$1.6 billion spent on research and 
development per new entity goes towards preclinical 
work [1]. The demand for faster, accurate in vivo valida-
tion is underscored by the growing number of high-value 
targets being generated by platforms that combine com-
putational modelling and automated biophysical and in 
vitro screening, which still require in vivo validation [2, 
3].

Perinatal brain injuries are one key area of human 
health in which preventative and treatment options are 
severely limited and only partially effective [4]. Every 
year, 15 million infants are born preterm, before 37 weeks 
of 40 weeks of gestation. One million of these infants will 
die, and up to 60% of those surviving preterm birth will 
develop brain injury. Injury to the preterm brain includes 
hypomyelination, reduced grey matter volumes driven by 
synaptic and interneuron defects, and microgliosis, col-
lectively termed encephalopathy of prematurity (EoP). 
These infants are also at an increased risk of developing 
a germinal matrix haemorrhage (GMH), characterised by 
white matter damage and microgliosis. These injuries put 
preterm-born infants at an increased risk of developing 
cerebral palsy, autism spectrum disorder, attention defi-
cit hyperactivity disorder, and seizures [5]. Preterm birth 
is even associated with an increased risk of adult stroke 
[6] and Alzheimer’s disease [7]. We have no effective way 
to prevent or treat these injuries. As such, effective treat-
ment of preterm-born infants presents an extraordinary 
opportunity for improving disability-adjusted life years 
(DALYs).

Advancements in clinical research have led to the vali-
dation of surrogate outcome measures that are quicker 
and easier to obtain than the gold standard of behaviour 
at two years, streamlining workflows and enhancing the 
efficiency of clinical trials. For example, the Centre for 
the Developing Brain team at King’s College London sub-
stantially decreased the required patient number to test 
therapies to treat term infant neonatal encephalopathy 
[8]. This was achieved by establishing a clear correlation 
between two early markers of injury, early imaging for 
lactate to N-acetyl aspartate ratio in the thalamus and 
fractional anisotropy in the posterior limb of the internal 

capsule, and neurobehavioral outcomes at two years of 
age [9].

Microglia-mediated neuroinflammation and white 
matter injury are two early markers of injury that 
strongly correlate with behavioural outcomes in EoP and 
GMH models, and are also observed in patient cohorts 
[10–17]. An immune-activated state of these resident 
immune cells involves the production of cytokines and 
reactive oxygen species, which directly injure the devel-
oping brain [18, 19]. Immune activation also prevents 
microglia from undertaking key roles in brain develop-
ment, including supporting oligodendrocyte maturation, 
neuronal migration, and synaptic pruning [20–22]. Expo-
sure to maternal or foetal infection and inflammation 
during pregnancy is a key risk factor for the occurrence 
of preterm birth [23, 24], and increases the risks of EoP 
and long-term neurodevelopmental impairments [25–
28]. Modelling EoP using exposure to a systemic inflam-
matory challenge [29–32] mimics the hallmarks of injury 
in infants with EoP, including microglial immune-reactiv-
ity, white matter injury, reduced myelin protein expres-
sion, and long-term neurocognitive impairments. GMH 
is a rupture of the capillary network of the subependy-
mal germinal matrix that occurs in approximately 12% 
of preterm-born infants [33]. GMH modelled with intra-
germinal injection of collagen to disrupt tissue integrity 
mimics the clinical signs of GMH, including microgliosis, 
grey matter injury, white matter injury (reduced myelin 
protein expression), and long-term neurocognitive defi-
cits [34] Andersson, 2021 #7087 [35]). As such, microglial 
reactivity and myelination may be key surrogates around 
which to build a streamlined pathway for screening ther-
apies for perinatal brain injuries.

Mesenchymal stromal cells (MSCs) have a low 
immunogenicity and possess anti-inflammatory and 
anti-oxidative properties. They reduce microglial 
immune-reactivity and stimulate myelin production 
when applied in the context of in vitro and in vivo models 
of perinatal brain injury [36–40]. MSCs are safe for use in 
preterm-born and term-born infants, as well as in chil-
dren with cerebral palsy [38, 41, 42]. However, substantial 
problems with the current body of evidence hinder trans-
lation and commercialisation. Studies often use poorly 
characterised stem cells unsuitable for commercial pro-
duction. There are very few studies specifically address-
ing models of preterm brain injury [41, 43]. Furthermore, 

confirmed in a second model relevant to preterm infants, but with a different pathophysiology, namely germinal 
matrix haemorrhage. In conclusion, we have established a scoring protocol that expedites the collection of 
comprehensive dose, time and route of administration data critical for establishing large animal and clinical trials 
with the greatest chance of success.
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comprehensive dose, timing, and route-finding studies, 
validated across multiple clinically relevant models, are 
lacking but are needed to inform clinical trial design. 
These comprehensive studies are costly and typically out-
side the reach of most laboratories. Increasing the effi-
cacy of this type of screening was an aim of this study.

This study introduces an optimised high-throughput 
and multi-modal screening protocol to determine the 
optimal time, dose and route of administration options 
for treatment by a standardised human umbilical cord-
derived MSCs (HuMSCs) therapy in two clinically 
relevant rat models of the brain injury observed in pre-
term-born infants – EoP [44–46] and GMH [34, 35, 47]. 
We evaluated administration route (intranasal, IN versus 
intravenous, IV), dose (20 M, 50 M and 125 M cells/kg), 
and delivery timing (acute, postnatal day (P)5; second-
ary, P10; and tertiary delivery, P20; Fig.  1). We hypoth-
esise that microglia-enriched transcriptome profiling 
combined with myelin basic protein (MBP) imaging will 

predict HuMSC efficacy. The outcome scoring proto-
col we developed using a computational score based on 
microglial sequencing profiles and MBP revealed that 
intranasal treatment, delivered in the tertiary phase of 
injury (equivalent to 2–3 years of age in the infant), effec-
tively reduces brain injury in our EoP and GMH models.

Methods
Animal models of brain injury relevant to preterm-born 
infants
Figure  1 is a schematic of modelling inflammation-
associated EoP and GMH and the HuMSC treatments 
and analysis time points. All experimental procedures 
followed the ARRIVE guidelines [48]  and were under-
taken in line with national guidelines with prior ethical 
approval from Université Paris-Nord and the French 
Ministry of Higher Education, Research, and Innovation 
APAFIS #23460–2019122413519837 or the Gothenburg 
Animal Ethics Committee 825–2017 and 2195–19. All 

Fig. 1  An outline of our optimised high through-put in vivo screening protocol for determining the ideal treatment paradigm for human umbilical 
cord-derived MSCs (HuMSCs) in two rat models of perinatal brain injury: inflammation-induced encephalopathy of prematurity (EoP, via intraperitoneal 
IL-1β injection) and germinal matrix haemorrhage (GMH, via intraventricular collagenase VII injection). EoP and GMH were studied in independent animal 
cohorts; no subject received both models. We screened the route of administration (intranasal, IN versus intravenous, IV), dose (20, 50 and 125 M cells per 
kg bodyweight), and timing of delivery (acute, P5; secondary, P10; and tertiary, P20). Outcome measures are RNA sequencing and analysis of microtubule-
associated protein (MAP2) and myelin basic protein (MBP) via western blotting or immunohistochemistry
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animals were housed with a 12-h light/dark cycle and 
free access to food and water.

Inflammation-associated EoP
Wistar Han strain rats were purchased from Charles 
River (L’Abresle, France). Rats were intraperitoneally (i.p) 
injected twice daily from the post-natal day (P)1 to P4 
and once in the morning of P5 with 10 μL recombinant 
mouse IL-1β (Miltenyi Biotec, Bergisch Gladbach, Ger-
many) diluted in 1X PBS (0.12 M) to a final dose of 20 μg/
kg, or the same volume of 1X PBS [44, 45, 49]. Separation 
from the dam was no more than five minutes per injec-
tion. Sex determination was performed at birth and con-
firmed at tissue collection. Male pups were used, as only 
males develop a consistent hypomyelination phenotype 
in this paradigm, reflecting the clinical scenario of a male 
bias to injury [50]. All litters were culled to 12 pups from 
P1 by random selection after sex determination.

Germinal matrix haemorrhage
Wistar Han rats were sourced from Janvier Labs and bred 
at the Experimental Biomedicine Centre, University of 
Gothenburg. Male and female rat pups were randomly 
allocated into control and GMH groups at P5. Following 
anaesthesia with isoflurane (5% for induction and 3.5% 
for maintenance) in a 1:2 mixture of oxygen and nitrogen, 
rats were injected in the right striatum with either col-
lagenase VII (0.3 U, 1000–3000 CDU/mg solid, C2399, 
Sigma-Aldrich, Saint Louis, U.S.A.) to induce GMH or 
with PBS as control. Injections were administered at 1 
μL per minute for 2 min into the right hemisphere, 1 mm 
rostral of the bregma and 4 mm lateral of the midline, and 
3.5 mm in depth, using a 27G (0.4 mm diameter) needle 
attached to a 1  mL Hamilton syringe (Hamilton Com-
pany, Bonaduz, Switzerland) connected to an CMA 100 
microinjection pump (CMA Microdialysis, Massachu-
setts, U.S.A) as described previously [34, 35, 47]. After 
recovery on a heating pad at 37 °C, pups were returned to 
their home cages. The duration of the procedure did not 
exceed five minutes per animal.

HuMSC culture
HuMSCs were supplied by Chiesi Farmaceutici after 
manufacturing by Lonza and were prepared according to 
the supplier's recommendations. Two days before admin-
istration, 5 × 106 cells were thawed at 37 °C, resuspended 
in complete medium (basal proprietary medium, comple-
mented with 5% platelet lysate and 2000 U/L heparin), 
plated in T75 cell culture flasks (Corning, New York, 
U.S.A) and cultured for 48  h. HuMSCs were counted 
using the NC-200 cell counter (Chemometec, Allerød 
Denmark) and plated at 15 × 106 cells/mm2 in T75 flasks. 
On the day of administration, cells were trypsinised 

(trypsin/EDTA 0.25%, Gibco, Munich, Germany), cen-
trifuged (300 g × 3 min), and the cell pellet resuspended 
in cold, sterile PBS and counted. An additional cell count 
was performed immediately before administration.

Administration of the HuMSCs
We define the control (Ctrl) uninjured group as the PBS-
treated (sham treatment) animals not subjected to injury, 
the injured group as IL-1β-exposed or GMH animals 
that did not receive a HuMSCs injection but received 
PBS (sham treatment), and the treated group as IL-1β-
exposed or GMH animals that received a HuMSCs treat-
ment (diluted in PBS). In the EoP model, 18 treatment 
protocols were tested: three different doses (20 M cells/
kg, 50  M cells/kg, and 125  M cells/kg); three different 
time points (acute phase at P5, the subacute phase at P10 
and the tertiary phase at P20); and two routes of admin-
istration [38] (IN versus IV). In the GMH model 8 treat-
ment protocols were tested (IN and IV administration at 
P10 and P20, of 20 and 50 M cells/kg BW).

Magnetic-activated cell sorting and RNA extraction
Rats were anesthetised 48  h after HuMSCs administra-
tion with an i.p injection of pentobarbital sodium and 
phenytoin sodium (150  mg/kg, Euthasol, Virbac AH, 
Inc., Fort Worth, U.S.A) and intracardially perfused with 
0.9% sodium chloride. The olfactory bulbs and cerebel-
lum were removed, and remaining tissues dissociated 
using the Miltenyi Biotec Neural Tissue Dissociation 
kit (for P7 brains) or Adult Brain Dissociation kit (P12 
and P22 brains), on the gentleMACS Octo Dissocia-
tor with heaters as per the manufacturers' instructions. 
From the resulting brain homogenate, microglia were 
enriched using anti-CD11b/c antibody-coupled micro-
beads (Miltenyi Biotec). After collection of the CD11b/c 
positive cell fraction, the isolated cells were centrifuged, 
and cell pellets were conserved at −80 °C until messenger 
RNA (mRNA) extraction. RNA was extracted using the 
NucleoSpin RNA XS Plus kit (Macherey–Nagel, Dueren, 
Germany) according to the manufacturer’s recommenda-
tions and eluted in 16 μL of RNase-free water. Each pro-
tocol had N = 3 replicates; see Supplementary Table 1 for 
an overview of sequencing batches and replicates. RNA 
quality was assessed using an Agilent fragment analy-
ser (5300 Fragment Analyzer System), and all samples 
were > 7 cutoff.

Library preparation, sequencing, and differential analyses
Library preparation and Illumina sequencing were per-
formed at the Ecole Normale Superieure genomics core 
facility (Paris, France). Messenger (polyA +) RNAs were 
purified from 100  ng of total RNA using oligo(dT). 
Libraries were prepared using the strand-specific 
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RNA-Seq library preparation TruSeq Stranded mRNA 
kit (Illumina). Libraries were multiplexed by 15 on six 
flow cell lanes. A 75 bp single read sequencing was per-
formed on a NextSeq 500 device (Illumina). An average 
of 27 ± 7  M reads passing the Illumina quality filter was 
obtained for each sample. Analyses were performed using 
the Eoulsan pipeline [51], including read filtering, map-
ping, alignment filtering, read quantile normalisation, 
and differential analysis. In the Eoulsan pipeline, reads 
were aligned against the rnor6 genome from Ensembl 
version 96 using STAR (version 2.7.2d) [52]. Then, align-
ments from reads that matched more than once on the 
reference genome were removed using samtools (Java 
version) [53]. We used the rnor6 GTF genome annotation 
version 96 from the Ensembl database to compute gene 
expression. All overlapping regions between alignments 
and referenced exons were counted and aggregated by 
gene using HTSeq-count 0.5.3 [54]. Finally, normalisa-
tion of sample counts, statistical treatments, and differ-
ential analyses were performed using DESeq2 1.8.1 [55]. 
The RNASeq gene expression data and raw fastq files are 
available on the GEO repository (www.ncbi.nlm.nih.gov/
geo/) under accession number: GSE298271.

Signalling pathways analysis from RNAseq data
Heatmaps were generated using the Morpheus software 
(​h​t​t​p​​s​:​/​​/​s​o​f​​t​w​​a​r​e​​.​b​r​​o​a​d​i​​n​s​​t​i​t​​u​t​e​​.​o​r​g​​/​m​​o​r​p​h​e​u​s), a ​h​i​e​r​a​r​c​
h​i​c​a​l clustering method that couples means using Pear-
son's correlation. The various gene functional annotations 
shown in the figures for each gene cluster were obtained 
by running an Over Representation Analysis (ORA) 
using WebGestalt (functional database: Gene Ontology, 
enrichment categories: Biological Process no Redundant, 
Molecular Function no Redundant, Cellular Component 
no Redundant, number of genes in category: between 5 
and 2,000, FDR adjusted using Benjamini-Hochberg (BH) 
method with cut-off at 25%). For each cluster, the consid-
ered gene list comprises the genes within the cluster, and 
the background list consists of the measured genes in the 
corresponding RNA sequencing data.

In silicoefficacy scoring of RNA-sequencing data
The code required for this process is provided as supple-
mentary data and is updated on a GitHub repository (​h​t​t​
p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​I​N​S​E​​R​M​​-​U​1​​1​4​1​​-​N​e​u​​r​o​​d​i​d​​e​r​o​​t​/​p​r​​e​m​​s​t​e​
m​-​s​c​o​r​i​n​g).

Building a signature of HuMSC-induced treatments
A signature s → from reference group Gi (injured) to 
treated group Gt (that we denote [Gi → Gt]) is a vector 
of numbers. s → is defined as a quantitative summary of 
differential gene expression analysis on treated group Gt 
compared to reference group Gi:

 	– The number of values in the signature is the number 
of significantly differentially up-regulated or down-
regulated genes in treated group Gt compared to 
samples from reference group Gi.

 	– The positive (resp., negative) signs of these 
values correspond to up-regulation (resp., down-
regulation).

 	– The absolute values of these coefficients correspond 
to the magnitude (or strength) of change in 
expression and are analogues to log2 fold changes.

Genes that are absent from the signature are either unaf-
fected or non-significantly affected by the treatment (that 
is, their magnitude in the signature is equal to zero). 
Conversely, genes associated with nonzero coefficients 
in the signature are significantly altered genes. Thus, the 
signature s → accounts for both the direction and the 
magnitude of changes in gene expression for each gene. 
Here, we consider the microglial change from the injured 
group to control or from injured to treated groups, 
which belong to the same sequencing batch (Supple-
mentary Table 1). To build signatures, let us first notice 
that classical differential expression analyses are usually 
performed independently for each gene (univariate dif-
ferential analyses). However, the transcriptomic impact 
of a treatment is often driven by groups of genes that may 
individually carry low changes in expression. To consider 
group-of-genes effects on expression, we used Char-
acteristic Direction (CD) to compute s → [56] (Supple-
mentary Fig. 1 and Fig. 2). First, for a given sequencing 
batch (associated with a fixed route and age of adminis-
tration), we considered its normalised expression matrix 
as provided by DESeq2 (Supplementary Table  2) [55]. 
Then, for each group (injured or treated), we only pre-
served samples in the matrix that belonged to either the 
treated or injured groups. Then, we applied the Char-
acteristic Direction procedure to this matrix to deter-
mine the classification frontier between the treated and 
injured groups. This frontier is a high-dimensional vec-
tor with a number of coefficients equal to the number 
of genes. It roughly splits samples into two parts of the 
high-dimensional plane, each corresponding to one of 
the conditions. This vector is computed by performing 
a type of regression called Linear Discriminant Analysis 
(LDA) on the gene expression matrix. Second, from the 
frontier determined at the first step, we computed vector 
s → , characterised by its direction and norm, such that 
s → is orthogonal to the frontier, goes from the control 
group Gi to the treated group Gt, and its coefficients V1, 
V2, … VN satisfy the equation V1

2 + V2
2 + … VN

2 = 1, where 
N is the total number of genes measured in the dataset 
(Supplementary Fig. 1a). Note that, as shown in (Supple-
mentary Fig.  1b), coefficient V1 (resp. V2, … VN) is the 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://software.broadinstitute.org/morpheus
https://github.com/INSERM-U1141-Neurodiderot/premstem-scoring
https://github.com/INSERM-U1141-Neurodiderot/premstem-scoring
https://github.com/INSERM-U1141-Neurodiderot/premstem-scoring
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projection of signature s → onto the axis associated with 
the first (resp., second, … Nth gene of the list; its absolute 
value grows as the gene expression is greatly affected by 
the treatment; and goes in the direction of the increasing 
(resp., decreasing values on the axis if the gene is up-reg-
ulated (resp., down-regulated by the HuMSC treatment. 
Using this procedure, we then compute the theoreti-
cally perfect treatment signature sp → [injured → con-
trol] and all tested experimental protocols signatures: 
s1 → [injured → Dose 1-treated], s2 → [injured → Dose 
2-treated], s3 → [injured → Dose 3-treated].

Design of the scoring process for ranking HuMSC efficacy
The treatments were then ranked according to their abil-
ity to reverse injury-induced changes in gene expression 
based on the signatures computed as described in the 
previous section. For each treated group (Dose i-treated) 
in each sequencing batch, we computed the cosine simi-
larity score (denoted cos) between its associated signa-
ture [model → Dose i-treated] and the corresponding 
theoretically perfect treatment signature [injured → con-
trol] (Fig.  2B). The computation of score cos (s1, s2) for 
any pair of signature vectors s1 and s2 (both of length 
n and where si is the ith coefficient of vector s) is score 
cos ([injured → Dose i-treated], [injured → control]). The 
score is between −1 and 1. The closer this score is to 1, 
the more similar the microglial transcriptome to the 
treated group at Dose i are to the control group. There-
fore, HuMCSs at Dose i restored a normal microglia 
transcriptional profile. Note that treatments that yield 
a score close to −1 (and, generally, any negative score) 
reflect no improvement in the changes in microglial gene 
expression from the injury-only group.

Protein extraction and western blotting
Snap-frozen right anterior cortex from the mice was 
homogenised in RIPA Buffer (Sigma-Aldrich) contain-
ing protease inhibitors (cOmplete Tablets, Roche, Basel, 
Switzerland) in gentleMACS M tubes using a gen-
tleMACS dissociator (Miltenyi Biotec) as per the manu-
facturer’s instructions. The samples were centrifuged 
(10,000 g, 10 min, 4 °C), the supernatants were collected 
and centrifuged again, and the pellets were stored for 
later use. Equal amounts of protein (25  μg), as deter-
mined by BCA protein assays (Sigma-Aldrich), were 
diluted with Lamemli sample buffer (Biorad, Basel, Swit-
zerland) containing 2-mercaptoethanol (Sigma-Aldrich) 
and then separated in Mini-protean TGX gels (Any kD, 
Biorad; 80  V for 110  min). Proteins were then electro-
transferred (Trans-blot Turbi, Biorad) onto a 0.2  μm 
nitrocellulose membrane (Trans-Blot Turbo Transfer 
Pack, mini, Biorad). Based on the predicted molecular 
weight of our target proteins and using a ladder marker as 
a guide, the membrane was cut into an upper and lower 
portion, and both were incubated in a blocking solution 
(5% bovine serum albumin, 0.1% Tween 20 in TBS) for 
one hour. Then, the lower portion was incubated with 
mouse anti-b-actin (Sigma-Aldrich AC-74, 1:20,000) and 
the upper portion with rat anti-MBP (Millipore MAB386 
1:500) overnight at 4 °C in blocking solution. Blots were 
rinsed with 0.1% Tween 20 in TBS and incubated for 
one hour with an HRP-conjugate goat anti-mouse IgG 
(1:2,000; Sigma-Aldrich) or HRP-conjugate goat anti-rat 
IgG (1:10,000; Invitrogen) in blocking solution. The blots 
were washed three times with 0.1% Tween 20 in TBS for 
five minutes. Membranes were processed with the Clar-
ity Western ECL substrate (Biorad), and the proteins of 

Fig. 2  Overview of the scoring pipeline. A Projection of transcriptome data in geometrical gene expression space and creation of vectors of character-
istic direction (CD) signatures between injured (i), treated (t), and control (Ctrl) groups. B Representation of the extreme values of the cosine score cos 
quantifying the similarity between two signatures (s). Here, to rank the various HuMSC treatment paradigms, the score cos was computed to compare the 
treatment t protocol overall impact on gene expression (st) with a theoretically perfect treatment signature (sp)
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interest were investigated with Syngene PXi (Syngene) 
coupled to acquisition software. The immunoreactivity 
of four isoforms of MBP was compared with that of actin 
controls using NIH image J software (2.0.0-rc-44/1.50e, 
http://rsb.info.nih.gov/ij/).

MAP2 and MBP immunohistological analyses
Rats were anesthetised by i.p injection with pentobarbi-
tal, perfused with 5% buffered formaldehyde (Histofix, 
Histolab, Askim, Sweden), then the brains were collected 
and stored at 4  °C in Histofix overnight before paraffin-
embedding. Coronal sections of the forebrain were cut at 
7 μm. Staining for MAP2 was performed on every 50th 
Sect.  (6 sections/animal) and for MBP on every 100th 
Sect. (3 sections/animal). Briefly, the sections were depa-
raffinised, followed by heat-mediated antigen retrieval in 
0.01  M citric acid and peroxidase blocking in 3% H2O2 
in 0.1  M phosphate buffer. After non-specific antibody 
blocking with 4% bovine serum albumin (BSA), sec-
tions were incubated with mouse anti-microtubule-
associated protein 2 (MAP-2, 1:1,000 dilution; M4403, 
Sigma-Aldrich, United States), mouse anti-myelin basic 
protein (MBP, 1:1,000 dilution; SMI-94 Covance, Princ-
eton, U.S.A) overnight at 4  °C. The following day, the 
sections were incubated with the corresponding sec-
ondary antibodies (1/200, Vector Labs, Burlingame, CA, 
United States) for 1 h at room temperature. The sections 
were then incubated for one hour in ABC Elite (Vec-
tor Labs) and visualised via incubation in 0.5  mg/ml 
3.3-diaminobenzidine in a buffer consisting of NiSO4, 
β-D-glucose, NH4Cl, and β-D-glucose oxidase (all from 
Sigma-Aldrich).

Automated quantitative analysis of brain injury using 
machine-learning
Images were acquired using a Zeiss Axioscan 7 slide 
scanner and quantified using ZEN Blue (3.2) software. 
Automated image segmentation was performed using a 
machine learning approach with Zen Intellisis. Two dif-
ferent Intellesis segmentation models were created by 
training on several images selected from all groups with 
varying staining intensity: (1) a model for segmentation 
of MBP positive areas in the striatum, and (2) a model for 
segmentation of MAP2 fibres in the motor cortex. These 
models were used to segment and quantify all images. 
An interactive measurement using these models was 
performed by defining a region of interest (ROI) in the 
striatum and motor cortex. The striatum ROI was deter-
mined by manually drawing around the entire striatum 
(Supplementary Fig. 2). To quantify MAP2 positive fibres 
in the cortex, a custom ROI of dimensions 2905.57 um 
by 1452.78 um was applied to all images in the M2/M1 
region of the motor cortex (Supplementary Fig.  2). Fol-
lowing automated machine learning-based segmentation, 

the MAP2 positive area in the striatum, MAP2 fibre 
count, length, and area coverage were quantified.

Statistics
The primary purpose of analysing the Western blotting 
data from the EoP was to determine the overall effects 
of injury and treatment on the group means, which was 
achieved using a Kruskal–Wallis test, as the data were 
not normally distributed. The second purpose was to 
determine which treatment applied in a trial would have 
caused significant changes in myelin content, and this 
was achieved using an uncorrected Dunn’s test compar-
ing groups to the injury condition. Similarly, for the anal-
ysis of MBP and MAP2 in the GMH model, an ANOVA 
was first applied to determine the overall effect of injury 
and treatment on group means. Subsequently, to assess 
the specific impact of treatment on the outcome mea-
sure, multiple comparisons were made with the injury 
condition, adjusting for a false discovery rate (FDR) of 
0.05 using the Benjamini, Krieger, and Yekutieli method, 
as the comparisons are not independent. Our multiple 
comparison tests are valid even in the absence of a signif-
icant ANOVA, given these analysis goals and the chosen 
tests. The analysis of the RNAseq data is described above.

Results
Model 1 — inflammation-associated encephalopathy of 
prematurity (EoP)
Validation of the impacts on the microglial transcriptome in 
the inflammation-induced model of EoP
In this model of EoP, systemic inflammation is induced 
by postnatal day (P)1–5 intraperitoneal interleukin-1β 
injection which induces neuroinflammation, which leads 
to oligodendrocyte maturation arrest, hypomyelination, 
interneuronopathy, and deficits on MRI and in behav-
iours [44, 46]. We have studied the microglia reactivity 
profile in this model in detail in the mouse in the acute 
and subacute phases (between P1-P10) and found a com-
bined immune-reactivity and disruption to developmen-
tal and homeostatic functions [19, 57]. In this study, our 
first goal was to verify this microglia reactivity profile in 
the rat at P7 and characterise the novel time points of P12 
and P22. In the sub-acute stages of injury in this model, 
at P12, the rat brain is approximately equivalent to that 
of an infant in the first month of life. In the tertiary phase 
of injury in this model, at P22, the rat brain is approxi-
mately equivalent to brain development in a 3-year-old 
child. We previously described that more than 95% of 
positive cells in our systemic inflammation-induced EoP 
paradigm applied to mice are microglia [57]. Similarly, 
in the rat, we observed that 95 + % of CD11b/c isolated 
cells were microglia, wherein we defined microglia as 
CD11bhi CD45lo cells, neutrophils defined as CD11bhi 
CD45hi Ly6Ghi, monocytes defined as CD11bhi CD45hi 

http://rsb.info.nih.gov/ij/
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Ly6Glo F4/80lo cells and macrophages defined as CD11bhi 
CD45hi Ly6Glo F4/80hi cells using fluorescent activated 
cell sorting. As such, we isolated CD11b/c positive 
microglia using our well-established paradigm [19, 49, 
58] and subjected them to RNA sequencing and analysis. 
The treatment, N, and batch summary are in Supplemen-
tary Table 1.

Using a traditional univariate approach (DESeq2), 945 
genes were significantly differentially altered (Benjamini-
Hochberg (BH) adjusted p-value < 0.05) under at least one 
control (PBS only, uninjured) or IL-1β (injured) condition 
at P7, P12 or P22 (Supplementary Table 2). Clusters gen-
erated using Morpheus (​h​t​t​p​​s​:​/​​/​s​o​f​​t​w​​a​r​e​​.​b​r​​o​a​d​i​​n​s​​t​i​t​​u​t​e​​.​
o​r​g​​/​m​​o​r​p​h​e​u​s) (Fig. 3a) were annotated using the Gene 
Ontology database integrated into DAVID 6.8 (Fig.  3b), 
and the annotations of the impacts of systemic inflamma-
tion were generally in agreement with our previous anal-
ysis of microglia in this model [19, 57, 59]. Comparing 
the injured and control groups, we observed two clusters 

at P7: Cluster A and Cluster B. The genes comprising 
Cluster A were more highly expressed in control animals 
and included those related to the cell cycle. Genes mak-
ing up Cluster B were more highly expressed in injured 
animals and involved response genes to an inflammatory 
stimulus, signal transduction and cell death. A third clus-
ter, Cluster C, was expressed by uninjured (PBS control) 
and injured (IL-1β-exposed) at P7 and P22 and is popu-
lated with genes associated with immune responses.

Ranking of the efficacy of HuMSC treatments in a model of 
inflammation-induced EoP
The vast amount of data outputs from transcriptomics 
and well-defined analysis pipelines make sequencing 
approaches valuable in developing a deep understand-
ing of specific events in small groups. However, these 
traditional methods are not well-suited to analyse the 18 
groups in this study to address the question of which time 
(acute, sub-acute, tertiary), treatment dose (20, 50, 125 M 

Fig. 3  EoP model: The effects of exposure to IL-1β from P1-P5 on the microglial transcriptome were assessed using RNA sequencing. In a clusters of 
genes that were differentially expressed between Control (Ctrl) and cells from IL-1β exposed rats (Benjamini–Hochberg adjusted p-value < 0.05) were 
visualised. In b these clusters were annotated using a gene ontology analysis (DAVID 6.8) to reveal impacts on inflammatory processes and proliferation

 

https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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cells/kg BW), and administration route (IN vs IV) is the 
most neuroprotective. We established a unique screening 
pipeline to address this challenge. Firstly, we used a mul-
tivariate approach called Characteristic Direction (CD), 
which is more sensitive and more robust than traditional 
univariate approaches, to identify differentially expressed 
genes, particularly in response to treatment perturba-
tion [56]. We considered the transcriptome profiling 
of control animals (injected with PBS only) as the ideal 
healthy state to retrieve through the MSC treatment and 
the transcriptome profiling of injured animals (injected 
with IL-1β only) as the reference injured state to compare 
each treatment option. The expected treatment response 
was estimated by computing the CD between these two 
states (control and injured). We also computed CD for 
the 18 treatment options. For each option, the similarity 
between the expected and the treatment response CDs 
was evaluated by measuring the angle between these two 
directions, a natural distance measurement called the 
Cosine score (Supplementary Fig.  1 and methods). This 
score is a value between −1 and 1.

This score represents how similar the two biologi-
cal comparisons are. The closer the score is to one, the 
closer the treatment response looks like retrieving a 
healthy state from the injured state – indicating that 
the HuMSC treatment has prevented the changes in the 
transcriptional landscape caused by injury. The results of 
the first stage of our scoring system are in Table 1. There 
were no sequencing batch effects on the scores. Most of 
the scores are positive, indicating positive impacts of the 

HuMSC treatment on the injury-related transcriptome. 
The highest score was 0.8 for the intranasal treatment 
protocol initiated at P20 using 50 M cells/kg. Treatments 
via the intranasal route consistently ranked higher than 
IV treatments, with 4 out of 5 top scores being intranasal 
and only 1 out of 5 lowest scores being intranasal treat-
ments. There was no monotonic (dose-dependent) effect 
on the score. For interest, we created a cluster map of the 
differentially expressed genes (BH, P < 0.05) for the group 
with the highest ranking (0.80, IN treatment at P20 with 
50  M cells/kg BW, Fig.  4a) to explore preliminarily the 
pathways modulating the positive association (Fig.  4b). 
Interestingly, only one pathway related to inflammation 
in Cluster A, ‘Response to dsRNA’, but the others are pri-
marily related to homeostasis and cell stress responses. 
Cluster B had no direct links with inflammation, and 
all pathways were linked to fundamental structural 
development.

Completion of the ranking by analysis of myelination in a 
model of inflammation-induced EoP
Exposure to systemic and neuroinflammation from P1-5 
recapitulates the clinical phenotype of white matter 
injury, which is driven by a blockage of oligodendrocyte 
maturation and a decrease in the production of myelin 
proteins [60, 61]. Thus, measuring the expression of MBP 
was used as the second component of the scoring system 
to measure the neurotherapeutic efficacy of the HuMSCs. 
MBP was assessed via western blotting (Fig. 5). We anal-
ysed whether the means of the MBP data varied between 
groups for each time point of treatment using a Kruskal–
Wallis test (Table 2; the P10 and P20 analyses were signif-
icant (p < 0.002. We also applied an uncorrected Dunn’s 
multiple comparison test using the IL-1β group as the 
comparison to detect specific treatment effects. The data 
are shown in Fig. 5.

Specifically, we found that exposure to IL-1β from 
P1-5 significantly altered the expression of MBP at P12 
(Fig.  5c, decreased 31%, p = 0.0027) and P22 (Fig.  5d, 
decreased 19%, p = 0.0565). However, at P7, when MPB 
expression is still relatively low, although mean expres-
sion was reduced by 15%, this was not significant (Fig. 5b, 
p = 0.182). Considering HuMSC effects, in the acute 
phase treatment paradigm, at P5, we observed that there 
were no increases in MBP with HuMSC treatment, and 
20  M cells/kg IN treatment tended to decrease MBP 
(Fig. 5b, by 27%, p = 0.0814). In the sub-acute treatment 
paradigm, applied at P10, there was a significant increase 
in MBP compared to IL-1β only in the 20 and 125  M 
cells/kg groups treated IV and in the 50 M cells/kg group 
treated IN (Fig. 5c). In the delayed treatment, applied at 
P20 in the tertiary phase, IV treatment had no positive 
effects at any dose. In contrast, there was a significant 

Table 1  EoP model. Summary of Cosine score by treatment group
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increase in MBP compared with IL-1β only mediated by 
IN MSC treatment at all doses (Fig. 5d).

We then brought together the two data sets, to create 
the scoring matrix. We directly compared the Cosine 
score and the impact on MBP (Fig.  5e). We found that 
highest Cosine score was the P20 IN 50 M cells/kg which 
significantly increased MBP, by approximately 60%. 
Overall, IN treatments had higher Cosine scores, and 
two of the three tertiary phase treatments were in the top 
Cosine scores.

Model 2 — Germinal matrix haemorrhage (GMH)
Validation of ranking by decrease of brain injury in the GMH 
model
To verify the ability of our composite microglia transcrip-
tome and myelin protein scoring system to identify neu-
rotherapeutic HuMSC treatments, we undertook further 
testing of the HuMSC efficacy in a rat model of GMH. 
We tested HuMSC efficacy via IN delivery at sub-acute 

(P10) and tertiary (P20) treatment paradigms at 20 and 
50  M cells/kg BW, analysing neuronal microtubule-
associated protein 2 (MAP2) and MBP (Supplementary 
Figs. 3 and 4, Figs. 6 and 7, and Table 3). We excluded the 
P5 paradigm and 125 M cells/kg, as these had no positive 
or negative impacts on outcomes in the first-line screen 
(Table 2, Fig. 5). As such, we assessed four paradigms of 
treatment: (1) 20 M cells/kg BW delivered five days after 
GMH at P10, with the injury assessed ten days later at 
P20, (2) 20  M cells/kg BW delivered fifteen days after 
GMH at P20, with the injury assessed ten days later at 
P30, (3) 50 M cells/kg BW delivered five days after GMH 
at P10, with the injury assessed ten days later at P20 and 
(4) 50  M cells/kg BW delivered fifteen days after GMH 
at P20, with the injury assessed ten days later at P30. To 
assess the overall impacts of injury and treatment, the 
control (ctrl; uninjured), GMH (with PBS vehicle treat-
ment), and GMH + HuMSC (in PBS vehicle) groups were 
compared using a One-Way ANOVA, as they passed the 

Fig. 4  EoP model. Analysis of differentially expressed genes in the top-ranked treatment group (0.80 score: IN treatment at P20 with 50 M cells/kg) il-
lustrating in a gene clusters and in b the mapped gene ontologies
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Fig. 5  EoP model. Analysis of expression of MBP across groups following HuMSC treatment. In a example blots from treatment at P20, and analysis fol-
lowing treatment at b P5, (c) P10 and d P20 analysed with a Kruskal–Wallis test and Dunns multiple comparison testing. In e a summary of the MBP data 
arranged in left to right order of highest to lowest microglial cosine score (from Supplementary Table 2). The cosine score is presented in italics in the 
bottom of each bar
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Brown-Forsythe test (reported in Table  3). The specific 
changes from GMH were assessed with an FDR cor-
rection to 5%; q values are reported on Supplementary 
Figs. 3 and 4 and Figs. 6 and 7.

We first assessed MAP2 loss in the striatum and the 
effects of IV delivery for the four groups. Significant 
changes in the means across the groups were noted 
only in IV treatment with 20  M cells/kg at PND20 and 
IV treatment with 50  M cells/kg at PND10 (Table  3; 
Supplementary Fig. 3). In the multiple comparison test-
ing, we only uncovered a non-significant trend (q = 0.063) 
for a HuMSC treatment effect for 50  M cells/kg at 
PND10 (Supplementary Fig.  3). No other analyses were 

undertaken for the IV groups based on this and the low 
ranking from the EoP model (Fig. 5e).

We then assessed the effects of IN treatments on MAP2 
loss in the striatum (Fig. 6, Table 3). In the ANOVA, there 
was a trend toward change across group means for the IN 
treatment with 20  M cells/kg at PND20 (p = 0.063). The 
three other IN-treated groups reported significant differ-
ences across the means of the three groups (all, p < 0.01; 
Table  3). Specifically, in the multiple comparison test-
ing, GMH led to a significant loss of MAP2, which was 
not recovered by 20  M cells/kg treatment at PND10 or 
PND20 (Fig.  6b,c). However, the loss of MAP due to 
GMH was significantly recovered by IN 50 M cells/kg at 
P10 (q = 0.039; Fig. 6d) and showed a trend toward recov-
ery with IN 50 M cells/kg at PND20 (q = 0.057; Fig. 6e).

We then assessed the effects of GMH and HuMSC on 
loss of myelinated nerve fibres for the treatments found 
to have positive impacts on MAP2: 50  M cells/kg IN 
PND10 and PND20 (MBP expression, Supplementary 
Fig. 4, Fig. 6). When we delivered 50 M cells/kg IN five 
days after GMH (at P10) and evaluated injury on P20, we 
found no change in the group means for a total area cov-
erage of MBP in the striatum (Table 3), similarly reflected 

Table 2  Main effects statistical outputs from the EoP model
Output, age: test Figure Main effects 

statistics
MBP frontal cortex, P5: Kruskal–Wallis Fig 4b H (7, 47) = 10.93, 

p = 0.1417
MBP frontal cortex, P10: Kruskal–Wallis Fig 4c H (7, 43) = 23.57, 

p = 0.0014
MBP frontal cortex, P20: Kruskal–Wallis Fig 4c H (7, 57) = 39.58, 

p = < 0.0001

Fig. 6  GMH model. Effects of HuMSC treatment on a loss of MAP2 protein. In a example MAP2 striatal staining from control and GHM animals treated 
with 20 M cells/kg IN at PND10. Scale bar = 1 mm. Analysis of MAP2 loss in the pups treated with 20 M cells/kg IN at b PND10 and c PND20, then in the 
pups treated with 50 M cells/kg IN at d PND10 and e PND20. Analyses via a Kruskal–Wallis test (see Table 4) and results from the multiple comparison to 
GMH adjusted to a 5% FDR are shown
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with no group-specific changes (Supplementary Fig. 4a). 
There was a significant change in the group means for the 
outcome measures of MBP fibre length and diameter that 
were noted to be driven by injury effects from the GMH 
itself (q < 0.01) and not any effects of treatment (q > 0.12; 
Supplementary Fig. 4b).

We then tested the higher dose of 50  M cells/kg, 
administered 15 days after GMH (at P20), and evaluated 
injury on P30 (Fig. 7). In this paradigm, there were signif-
icant differences in the group means for MBP in the stria-
tum and MBP characteristics in the cortex; fibre number 
and fibre diameter (Table  3). Specifically, the GMH 
induced reduction in MBP-positive white matter area 
of the striatum (q = 0.0001) was recovered by HuMSC 
treatment (q = 0.0003; Fig.  7a). When we looked at the 
specific characteristics of the MBP positive myelin in the 
cortex, HuMSCs significantly improved GMH-induced 

changes in MBP positive fibre number (q = 0.011) MBP 
positive fibre diameter (q = 0.016) and caused a non-sig-
nificant trend to an increase in MBP positive fibre length 
(q = 0.071) (Fig. 7c).

Discussion
We developed a scoring system using indices of microg-
lial gene expression changes and myelin protein expres-
sion to rank the efficacy of HuMSC treatments in a 
model of inflammation-induced EoP. This scoring sys-
tem enabled us to screen 18 groups effectively and was 
predictive of treatment efficacy in a second brain injury 
model relevant to preterm-born infants. Across treat-
ments and models, we found that HuMSCs at 50 M cells/
kg BW, when administered in the tertiary phase (15 days) 
after injury via the IN route, were the most effective at 
reducing white and grey matter injury (Table  4, bold). 

Fig. 7  GMH model. Effects of HuMSC treatment on expression characteristics of MBP. In a example MBP striatal staining from control and GHM animals 
treated with 50 M cells/kg, IN at PND20. Scale bar = 200um. Analysis of MBP in the pups treated with 50 M cells/kg IN at PND20, showing in b MBP area 
coverage in the striatum, and then in the cortex (c-i) MBP positive fibre number, (c-ii) MBP fibre length, (c-iii) MBP fibre diameter. Analyses as per Table 3 
and results from the multiple comparison to GMH adjusted to an FDR of 5% are shown
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This scoring system is a valuable template for screening 
treatment paradigms across neurological disorders, as 
screening can be undertaken more quickly than previous 
approaches.

This paper introduces a computational scoring s ystem 
that has substantial positive attributes for studying neu-
roprotective agents. While several prior animal scoring 
systems exist, such as Ozaydin et al. [62] who developed 
a hippocampal gross-pathology score (0–6) for neonatal 
HI in mice, Yang and Kuan [63] who used morphologi-
cal assessments quantify white matter and BBB injury via 
histology in the HI model, and a model to link cell death 
with a categorical injury score in a piglet model of HI 
[64]. These approaches tend to focus on structural dam-
age in single models and use categorical or semi-quanti-
tative metrics. In contrast, our approach combines core 
histological markers (MBP/MAP2) with CNS-system-
level immune balance indices (MG-transcriptomics). 
This means that the scoring system provides input into 
the functional tissue-level outcomes and the trajectory of 
(immune-mediated) changes occurring. This makes our 

scoring system agnostic to the therapeutic agent, as it is 
based on the response of microglia, which play a central 
role in almost every neurological and neurodegenera-
tive disorder studied [65–68], as well as core structural 
protein indices that would be valuable to improve across 
therapies. In addition, prior approaches for compress-
ing complex data have relied on categorical scales (mild/
moderate/severe) [69, 70], but the cosine score allows for 
data compression with a continuous, quantitative metric, 
allowing sensitivity to subtle treatment effects.

A key limitation in the field of MSC research is the 
low standardisation of the process for their isolation, 
characterisation and expansion. The HuMSCs used in 
these experiments are research-grade, manufactured by 
a leader in the field (Lonza), and their quality was con-
trolled through strict and specific analytical testing 
prior to use. The HuMSC were derived from the stro-
mal Wharton’s Jelly of the umbilical cord, characterised 
by APCDD1 expression and lack of 3G5 expression. This 
contrasts with HuMSCs derived from the perivascu-
lar area of the umbilical cord that express 3G5 and lack 
APCDD1 expression. The stromal Wharton’s Jelly was 
chosen as the source instead of the perivascular area to 
ensure a uniform HuMSC cell population due to the con-
tiguity of the perivascular area to the umbilical blood ves-
sels. The umbilical cord was preferred over bone marrow 
because HuMSC can be obtained through ex vivo meth-
odology. We decided on the doses in this study based 
on previous work from members of the PREMSTEM 

Table 3  Main effects statistical outputs from GMH model
Dose/Route/Treatment Age/Output/
region: Test

Figure Main effects 
statistics

20 M IV PND10 MAP2 loss striatum: One 
Way ANOVA

S. Fig 3a H (2, 50) = 0.93, 
p = 0.401

20 M IV PND20 MAP2 loss striatum: One 
Way ANOVA

S. Fig 3b H (2, 52) = 10.51, 
p = 0.0001

50 M IV PND10 MAP2 loss striatum: One 
Way ANOVA

S. Fig 3c H (2, 52) = 11.46, 
p = 0.010

50 M IV PND20 MAP2 loss striatum: One 
Way ANOVA

S. Fig 3d H (2, 46) = 2.08, 
p = 0.136

20 M IN PND10 MAP2 loss striatum: One 
Way ANOVA

Fig 5c H (2, 58) = 4.61, 
p = 0.013

20 M IN PND20 MAP2 loss striatum: One 
Way ANOVA

Fig 5d H (2, 61) = 2.89, 
p = 0.063

50 M IN PND10 MAP2 loss striatum: One 
Way ANOVA

Fig 5e H (2, 44) = 5.63, 
p = 0.006

50 M IN PND20 MAP2 loss striatum: One 
Way ANOVA

Fig 5f H (2, 44) = 3.70, 
p = 0.032

50 M IN PND10 MBP area cover striatum: 
One Way ANOVA

S. Fig 4a H (2,48) = 1.613, 
p = 0.21

50 M IN PND10 MBP fibre number cortex: 
One Way ANOVA

S. Fig 4b-i H (2,45) = 2.079, 
p = 0.137

50 M IN PND10 MBP fibre length cortex: 
One Way ANOVA

S. Fig 4b-ii H (2,45) = 4.108, 
p = 0.023

50 M IN PND10 MBP fibre diameter 
cortex: One Way ANOVA

S. Fig 4b-iii H (2,45) = 3.695, 
p = 0.037

50 M IN PND20 MBP area striatum: One 
Way ANOVA

Fig 6b H (2,57) = 11.87, 
p = < 0.0001

50 M IN PND20 MBP fibre number cortex: 
One Way ANOVA

Fig 6c-i H (2, 58) = 5.12, 
p = 0.0008

50 M IN PND20 MBP fibre length cortex: 
One Way ANOVA

Fig 6c-ii H (2, 58) = 2.69, 
p = 0.076

50 M IN PND20 MBP fibre diameter 
cortex: One Way ANOVA

Fig 6c-iii H (2, 58) = 5.18, 
p = 0.008

Table 4  At-a-glance efficacy map including EoP cosine and MBP 
findings, and GMH MAP2 and MBP findings
Route × Time 20 M/kg 50 M/kg 125 M/kg
IN P5 Cosine: 0.30

EoP MBP: ↓
GMH: n.t

Cosine: 0.25
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.20
EoP MBP: ↔ 
GMH: n.t

IN P10 Cosine: 0.55
EoP MBP: ↔ 
GMH: MAP2: ↔; MBP: ↔ 

Cosine: 0.70
EoP MBP: ↑✓
GMH: MAP2: 
↑✓; MBP: ↔ 

Cosine: 0.60
EoP MBP: ↔ 
GMH: n.t

IN P20 Cosine: 0.65
EoP MBP: ↑✓
GMH: MAP2: ↔; MBP: ↔ 

Cosine: 0.80
EoP MBP: ↑✓
GMH: MAP2: 
↑•; MBP: ↑✓

Cosine: 0.72
EoP MBP: 
↑✓
GMH: n.t

IV P5 Cosine: 0.10
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.15
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.12
EoP MBP: ↔ 
GMH: n.t

IV P10 Cosine: 0.40
EoP MBP: ↑✓
GMH: n.t

Cosine: 0.55
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.50
EoP MBP: 
↑✓
GMH: n.t

IV P20 Cosine: 0.35
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.45
EoP MBP: ↔ 
GMH: n.t

Cosine: 0.38
EoP MBP: ↔ 
GMH: n.t

↑ increase; ↓ decrease; ↔ no clear change; ✓ FDR-significant vs injury; • trend 
(q≈0.05–0.10); n.t. not tested; Grey-shaded cells indicate conditions not tested 
in GMH. Cosine score reflects similarity of treated microglial transcriptome to 
healthy controls (higher is better)
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consortium (www.premstem.eu) [40, 71–73] and the 
work of others in this area [74].

Treatment with HuMSC was most effective in both 
models when they were administered in the tertiary 
phase [75, 76], at least 15 days after the injury, which in 
the rat is equivalent to 2–3  years of age in a child [77]. 
In contrast, the P5 treatment is arguably equivalent to 
mid-to-late-term, and the P10 is equivalent to term age. 
This observation is therapy-specific, and we do not advo-
cate withholding proven acute phase neuro-repair inter-
ventions as they become available. Instead, our pipeline 
supports a stratified strategy: apply early care universally, 
then offer HuMSC to those with confirmed deficits or 
persistent risk (discussed further below). The effective-
ness of HuMSC treatment in the tertiary phase is sup-
ported by an increasing body of clinical evidence, which 
suggests that there are persisting facets of injury that may 
be targeted for intervention. These include biochemical 
data that changes in brain metabolites persist for at least 
one year after a hypoxic-ischemic (HI) injury at birth [78] 
and that there are neuroinflammatory changes after pre-
term birth that continue into childhood [79] and young 
adulthood [80]. In addition, there is evidence that periph-
eral immune cells are primed to respond more vigorously 
in children born preterm [81].

Preclinical evidence demonstrates that processes in 
the tertiary phase after perinatal brain injury are viable 
neurotherapeutic targets. For example, in models of term 
infant HI encephalopathy, improved outcomes have been 
reported when lithium treatment was initiated five days 
post-injury [82] and when methylprednisolone treatment 
was initiated seven days after injury [83]. Stem cells are 
also effective when administered in the tertiary phase in 
models of term infant HI encephalopathy. Specifically, 
adult adipose-derived MSCs reduced lesion size when 
administered with a delay of seven days post-injury [84], 
and bone marrow-derived MSCs reduced lesion size 
when delivered three days post-injury in a model of neo-
natal stroke [85], and in a model of HI encephalopathy 
[86]. In the second HI study by van Velthoven and col-
leagues, MSC treatment remained partially effective in 
this severe injury model, even when administered with 
a 10-day delay. Extensive cell death is a characteristic of 
these HI models and our GMH model. However, in the 
inflammation-induced EoP model, cell death does not 
play a significant role in injury [44], which is consistent 
with observations in human infants with moderate white 
matter injury [17, 87]. However, previous work also sup-
ports our observation that tertiary-phase MSC treat-
ments are effective in inflammation-mediated injury 
models, characterised by low cell death. Specifically, 
in a model of maternal immune activation (MIA, E14.5 
polyriboinosinic-polyribocytidylic acid, Poly I:C, expo-
sure) changes in the adult offspring linked to persisting 

microglia dysfunction could be overcome with the appli-
cation in the tertiary phase via deep brain stimulation 
[88] or modulation of the brain-derived neurotrophic 
factor (BDNF) pathway [89].

We found that MSC treatment trended to reduce 
the amount of myelin (i.e., caused more injury) in the 
inflammation-associated model of EoP when 20 M cells/
kg were administered at P5. Reports on the efficacy of 
stem cells in preclinical models are overall very positive, 
although there are examples where they have been shown 
to have no effect or do further damage [90, 91], and the 
field of stem cell regeneration struggles with publication 
bias [92–94]. Acute-phase treatment with MSCs might 
have led to poorer outcomes than tertiary treatments 
due to the impact of the tissue milieu on the MSCs. Spe-
cifically, studies primarily in adults have shown that the 
early classically pro-inflammatory environment in the 
injured brain negatively affects the overall regenerative 
abilities of stem cells, as reviewed in [95]. Counter-intui-
tively, pre-conditioning MSC before delivery with stimuli 
that may be considered ‘negative’, such as hypoxia or pro-
inflammatory cytokines, improves the abilities of MSC 
to repair the brain when delivered in vivo, as reviewed in 
[96]. However, the in vitro pre-conditioning exposes cells 
to simple and arguably mild stimuli compared with an in 
vivo injury setting. This leads us to hypothesise that strik-
ing differences between the in vitro and in vivo milieu 
easily explain why in vitro pre-conditioning can lead to 
better outcomes, but MSCs conditioned by delivery into 
the acute phase brain failed to be protective.

It is established that microglia play critical roles in 
causing perinatal brain injury [14, 19, 97] and under-
take vital roles in all stages of brain development and 
adult brain health, reviewed in [98, 99]. Underpinning 
these strikingly different functions over time are distinct 
transcriptional profiles across development [20, 100]. In 
this study, we verified a temporal profile of response to 
inflammation-induced injury to model EoP in rats, which 
we have well-characterised in mice [19, 57, 101]. MSCs 
are competent in reducing the classically pro-inflamma-
tory activation states of microglia [102, 103]. However, 
another avenue for future research is to study whether 
MSC treatment may improve outcomes by ‘reactivating’ 
microglia to a developmentally permissive state, wherein 
they are transcriptionally primed to stimulate myelina-
tion [15, 104, 105].

Treatments with strong potential for efficacy that can 
be delivered in the tertiary phase significantly benefit 
clinical trial design for infants with EoP. A substantial 
problem with undertaking clinical trials of acute phase 
treatments is that approximately 50% of preterm infants 
will do well on two-year outcome tests irrespective of 
any treatment, and we cannot effectively predict which 
infants will do well even with early clinical imaging. 

http://www.premstem.eu
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There are even significant limitations in the abilities 
of the current ‘gold standard’ behavioural assessments 
(such as Bayley’s III) at two years of age to predict longer-
term outcomes, especially in very preterm born infants 
[106, 107]. Thus, if you treat all preterm-born infants in 
the acute phase when you observe them at follow-up, it 
is impossible to discriminate between those who would 
have done well, irrespective of treatment and those 
who responded positively to the therapy. This statistical 
dilemma has implications for trial size (increasing time 
and cost) and leads us to deliver therapies to babies who 
do not need them. Although we strongly advocate for 
the development and application of treatments for the 
acute phase if they can be effective, our data suggest that 
it may not be ‘too late’ to treat brain injury once it can 
be reliably established that changes to the developmen-
tal trajectory have occurred. As such, our data suggests 
that while there are no effective acute phase therapies for 
brain injury, a viable strategy could be to deliver HuMSC 
therapies to infants only once neurological issues are 
diagnosed. Significant advances in gross motor analy-
ses make it possible for children to be reliably detected 
as high risk at 6–12 months in the case of cerebral palsy 
[108] or at 3–5 years in the case of neurodevelopmental 
disorders such as autism spectrum disorders or attention 
deficit hyperactivity disorder [109]. Our data suggests 
that stem cells could be ideal therapeutics for tertiary-
phase treatments, allowing treatment to be delivered only 
once any impact of perinatal brain injury is proven, and 
perhaps as an adjunct to acute phase therapies as they 
become available.

Our project goal was to establish a simple, reproducible 
scoring system based on core histological and transcrip-
tomic readouts. Moving towards clinical application, vali-
dating efficacy with additional physiological or biomarker 
datasets is essential. For example, future use should 
incorporate bedside tools such as near-infrared spectros-
copy (NIRS) or cerebral Doppler, along with cerebrospi-
nal fluid (CSF) or plasma cytokine profiling, which could 
provide complementary information to be evaluated in 
large animal models as part of the translational process 
[110–112]. These methods might ultimately help refine 
patient selection and optimal timing for treatment, and 
it will be crucial to study how these clinical indices align 
with the scoring system we outline.

In conclusion, this study highlights how a combination 
of computational biology and gold-standard neuropa-
thology can allow researchers to test the effectiveness of 
many treatment permutations for perinatal brain injury 
faster and more efficiently. Now that we have established 
the pipeline for this approach, this type of screening 
could improve the cost- and time-effectiveness of testing 
therapies for many disorders.
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